
Audio Engineering Society

Convention Paper 6749
Presented at the 120th Convention

2006 May 20–23 Paris, France

This convention paper has been reproduced from the author's advance manuscript, without editing, corrections, or consideration
by the Review Board. The AES takes no responsibility for the contents. Additional papers may be obtained by sending request
and remittance to Audio Engineering Society, 60 East 42nd Street, New York, New York 10165-2520, USA; also see www.aes.org.
All rights reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the
Journal of the Audio Engineering Society.

 Scalable Bitplane Runlength Coding
Chris Dunn

Scala Technology Ltd, London, UK

chris.dunn@scalatech.co.uk

ABSTRACT

Low-complexity audio compression offering fine-grain bitrate scalability can be realised with bitplane runlength
coding. Adaptive Golomb codes are computationally simple runlength codes that allow bitplane runlength coding to
achieve notable coding efficiency. For multi-block audio frames, coefficient interleaving prior to bitplane runlength
coding results in a substantial increase in coding efficiency. It is shown that bitplane runlength coding is more
compact than the best known SPIHT arrangement for audio coding, and achieves coding efficiency that is
competitive with fixed-rate quantisation.

1. INTRODUCTION

Audio coding algorithms with bitrate scalability allow
an encoder to transmit or store compressed audio data at
a high bitrate and decoders to successfully decode a
lower-rate bitstream contained within the high-rate
code. Scalability has become an important aspect of low
bitrate audio coding, particularly for multimedia
applications where a range of coding bitrates may be
required, or where channel bitrate fluctuates. Fine-grain
scalability, where useful increases in coding quality can
be achieved with small increments in bitrate, is
particularly desirable.

Audio coding with fine-grain bitrate scalability allows
real-time streaming with low buffer delay and
uninterrupted service in the presence of channel
congestion, and yields the most efficient use of

available channel bandwidth. Scalability is also useful
in archiving and personal media storage, where a
program item may be coded at the highest bitrate
required and stored as a single file, rather than storing
many coded versions across the range of required
bitrates. The potential reduction in overall storage
requirement achieved by using scalable formats can be
significant when maintaining large song libraries. As
well as the saving in storage, bitrate scalability avoids
cumulative archiving degradation that can occur due to
recoding.

While fine-grain bitrate scalability can be useful, it is
important that it is achieved without significant coding
efficiency penalty relative to fixed-bitrate systems, and
with low computational complexity. In this paper,
bitplane coding is examined as a simple and effective
method of achieving bitrate scalability. Bitplane coding
systems where runlength codes identify newly-
significant transform coefficient locations within

Dunn BITPLANE RUNLENGTH CODING

AES 120th Convention, Paris, France, 2006 May 20–23

Page 2 of 13

bitplanes are investigated in detail. Bitplane runlength
coding with adaptive Golomb runlength codes is shown
to offer coding efficiency that outperforms previously
reported SPIHT-based bitplane implementations, and is
competitive with the most effective fixed-rate
quantisation approaches. The results of listening tests
designed to assess the coding efficiency of a practical
demonstration codec employing bitplane runlength
coding are reported.

2. BITPLANE CODING
Audio compression algorithms typically use some form
of transform coding where the time-domain audio signal
is transformed to the frequency domain before
quantisation, entropy coding and frame packing to a
bitstream (Fig. 1). A psychoacoustic model determines a
target noise shaping profile, which is used to allocate
bits to transform coefficients such that quantisation
errors are least audible to the human ear. In a
conventional fixed-bitrate encoder the bit allocation is
typically achieved with a recursive algorithm that
attempts to meet the noise-shaping requirement within a
bitrate constraint [1]. It is the bit allocation and
quantisation stages of the coding process that are most
affected by scalability issues - the time-frequency
transform and psychoacoustic model in a scalable coder
can be similar to a fixed-rate design.

pcm
input time-

frequency
transform

psycho-
acoustic
model

frame
packing

bitstream
outputquantiser

and
coding

Fig. 1. Perceptual transform encoder for audio
compression.

One approach to achieving scalability is the ‘error-
feedforward’ arrangement where a core coder produces
the lowest embedded bit rate, and subsequent layers
progressively reduce the error due to the core [2].
However, a significant amount of side information is
associated with each layer which can reduce coding
efficiency, and the number of possible decoding rates is
limited to the number of layers.

An alternative approach to achieving scalability is
ordered bitplane coding of transform coefficients, where
in each frame coefficients are arranged in sign-
magnitude format and magnitude bits are coded in order
of significance, beginning with the most-significant bits
(MSB's) and progressing to the LSBs. This results in
fully embedded coding where the bitstream at a certain
rate contains all lower-rate codes, allowing low-
complexity bitrate scaling by simply truncating coded
frames. A related advantage is that variable-bitrate
coding can be easily implemented by truncating each
coded frame at an appropriate point before packing the
bitstream. Bitplane coding exhibits fine-grain scalability
in contrast to the coarse granularity offered by error-
feedforward systems, and generates an ordered
bitstream syntax which can simplify source-coding
efforts to increase error resilience. In addition to these
benefits, bitplane coding can yield a significant increase
in encoding speed since quantisation typically requires a
single scan through the transform coefficients for each
frame, as opposed to the recursive bit allocation search
executed in fixed-rate coding.

Current
Bitplane

Most
Significant
Bitplane

Magnitude

Coefficient List Entries

Refinement
bit

Significance
map MSB bit

Fig. 2. Two-stage bitplane coding distinguishes
significance map MSB bits from refinement LSB
bits.

Modern bitplane coding techniques have their routes in
image coding. Shapiro [3] described a bitplane coding
algorithm for two-dimensional wavelet transform
coefficients termed zero-tree quantisation, where each
bitplane is coded in two stages - a significance map
which identifies coefficients with MSBs positioned
within the current bitplane, and a refinement stage
which outputs LSB information for previously identified
significant coefficients (Fig. 2). In Shapiro's algorithm
the refinement bits are coded relative to a moving
threshold that is lower than that used to code the
significance map. The two-stage approach was later

Dunn BITPLANE RUNLENGTH CODING

AES 120th Convention, Paris, France, 2006 May 20–23

Page 3 of 13

refined by Said and Pearlman [4] with the SPIHT
algorithm, where the significance map and refinement
bits of each bitplane pass are coded with respect to the
same threshold. This is the preferred approach, since
with a common relative threshold quantisation error
intervals tend to be reduced more uniformly as bitplane
coding progresses, and is also preferred from a rate-
distortion perspective [5, Section 2].

Fig. 3 shows a general two-stage bitplane encoding
process, which can be used to code audio transform
coefficients on a frame-by-frame basis. Because the
quantisation error due to bitplane coding tends to a
white spectrum, perceptually-appropriate quantisation
error shaping can be achieved by weighting banded
coefficients prior to bitplane coding (step s0). Banded-
weight side information is output for each frame to
enable a complementary inverse weighting at the
decoder. At step s1 a bit allocation variable is initialised
to the required size of the coded frame, and is
subsequently updated as coding progresses. Scaled and
weighted floating-point transform coefficients x(k) are
represented in sign-magnitude format, and at step s2 the
largest coefficient magnitude within the frame |x|max is
determined and an initial threshold level T set such that

)1(.2max TxT <≤

T determines the current bitplane level in the encoding
process, and the initial threshold value is output as side
information so that a decoder can begin decoding at the
correct bitplane level.

For each bitplane, coefficients are scanned at step s3 to
locate those with magnitudes equal to or exceeding T –
these coefficients are significant with respect to the
current threshold. When a significant coefficient is
located, the component of the significance map
describing the location is coded and output to a buffer,
followed by a coefficient sign bit. When significance
map coding is complete, a refinement stage s4 is
executed where refinement bits corresponding to the
current threshold level are output to the buffer for all
significant coefficients previously identified in more-
significant bitplanes. T is halved at step s5 and coding
progresses to the next bitplane. This process is repeated
for progressively less significant bitplanes until the bit
allocation for the frame is reached, at which point
coding terminates (step s6), and at step s7 coded frame
data in the output buffer is written to the bitstream.

Since in the refinement stage the probability of coding
LSBs as ‘1’ or ‘0’ is approximately equal, refinement
bits can be output directly without additional entropy
coding, and most of the measurable differences in
coding efficiency that arise between different bitplane
coding algorithms occur due to differences in the way
the significance map is coded. An efficient coding
process will identify the MSB locations in each bitplane
using as few bits as possible.

A general bitplane decoding algorithm has a similar
structure, for each bitplane alternating between
significance map decoding to identify the positions of
newly-significant coefficient locations, and a refinement
stage which decodes LSB bits for previously-identified
significant coefficients.

START

YES

S1 – INITIALISE BIT
ALLOCATION FOR FRAME

S2 – DETERMINE MOST SIGNIFICANT
BITPLANE, SET INITIAL THRESHOLD T
AND OUTPUT TO BUFFER

S4 - REFINEMENT STAGE: FOR
SIGNIFICANT COEFFICIENTS
IDENTIFIED IN HIGHER BITPLANES,
OUTPUT REFINEMENT BITS FOR
CURRENT BITPLANE

S3 - CODE SIGNIFICANCE MAP:
LOCATE NEWLY-SIGNIFICANT
COEFFICIENT POSITIONS IN CURRENT
BITPLANE, OUTPUT POSITION CODE
AND SIGN BIT FOR EACH COEFFICIENT

S5 - DECREMENT BITPLANE: T = T / 2

S7 - WRITE OUTPUT BUFFER
INCLUDING SIGNIFICANCE MAP
AND REFINEMENT OUTPUTS
TO BITSTREAM

END

S6 -
BIT ALLOCATION > 0 ?

NO

S0 - WEIGHT COEFFICIENTS, OUTPUT
BANDED WEIGHTS TO BUFFER

Fig. 3. Bitplane encoding process.

Dunn BITPLANE RUNLENGTH CODING

AES 120th Convention, Paris, France, 2006 May 20–23

Page 4 of 13

An early example of audio bitplane coding is provided
by Karelic and Malah [6] who adapt Shapiro's zero-tree
approach for use with a non-uniform wavelet packet
decomposition. Bitplane coding is also the basis of Bit-
Sliced Arithmetic Coding (BSAC) [7], where
effectively arithmetic coding is used for significance
map coding. More recent examples of bitplane-based
audio coding have been described by Lu and Pearlman
[8], Dunn [9], Zhou et al. [10], and Li [11].

3. CODING EFFICIENCY

A useful measure of coding efficiency for any
quantisation scheme, fixed-rate or scalable, is to record
the proportion of total bitrate allocated to directly
coding coefficients that have been quantised to non-zero
values. Consider a coder with a frame length of K
samples; following time-to-frequency transformation
with critical sampling, the quantiser is presented with a
set of K coefficients to quantise and code for each
frame. In Section 2 we noted the significance map
identifies the positions of non-zero coefficient MSBs
within each bitplane. Let the total number of bits
allocated to code a frame = BA, the number of bits used
to code the significance map = SM, with the remaining
bits used to code non-zero coefficients NZ:

)2(.NZSMBA +=

Suppose that nsig coefficients are quantised to non-zero
integer values qNZ(i), that is nsig out of K coefficients
have been found to be significant. Noting that NZ
consists of magnitude and sign information for non-zero
coefficients, and does not include information regarding
the positions of qNZ(i) within K, the minimum number
of bits required to code qNZ(i) is given by

() ∑
−

=

+=
1

0
NZ 2)3(.1)(2log

nsig

i

iqNZ

This expression for NZ assumes no entropy coding of
significant coefficient values, and is similar to
Johnston’s description of perceptual entropy [12, Sec.
2.4.3].

Efficient coding requires compact significance map
coding, leaving as many bits as possible from the
available bit allocation for the frame to code non-zero
coefficients, and hence maximise nsig. One measure of

coding efficiency η is therefore obtained by calculating
the proportion of total bitrate allocated to NZ:

())4(.1)(2log1 1

0
NZ 2∑

−

=

+=
nsig

i

iq
BA

η

η indicates how efficiently quantised coefficient data is
'supported' within the generated bitstream. Shapiro has
shown that at low bitrates a large proportion of bitrate
must be allocated to the significance map, even with the
most efficient coding scheme possible [3, Sec. 3], hence
we would expect η to be lower than 0.5. In practice η
will tend to vary from frame to frame, and averaging η
over the duration of a test piece provides a useful
measure of algorithm coding efficiency that can be used
to compare the relative efficiencies of different
quantisation schemes.

While graphical plots of η as a function of bitrate are
effective at highlighting differences between
quantisation algorithms, perhaps a more relevant
measure of coding efficiency is obtained by computing
the average number of significant coefficients nsig
identified in each frame. The maximum possible value
for nsig is clearly equal to K, but typically less than 50%
of all available coefficients are coded to non-zero
values, even at higher bitrates. For bitplane quantisers
nsig tends to increase almost linearly with bitrate, and
so comparing the number of significant coefficients
coded by alternative quantisation algorithms allows
equivalent bitrate advantages / penalties to be computed.

By considering the different quantiser functions for
scalable bitplane coding and conventional fixed-rate
coding, we now show that nsig can also be used to
directly compare coding efficiencies of bitplane and
fixed-rate systems. The general bitplane encoding
algorithm described in Section 2 implements uniform
quantisation with a dead-zone around zero, resulting in
integer quantised coefficient values given by

)5(,)())((sgn)(
F

=

T
ixixiq

where TF is the final threshold value used to encode each
coefficient x(i). In the bitplane decoder, for each
significant coefficient identified there exists a range of
uncertainty concerning the reconstructed value, which
depends on the threshold TF corresponding to the final
significant bit decoded. A simple reconstruction

Dunn BITPLANE RUNLENGTH CODING

AES 120th Convention, Paris, France, 2006 May 20–23

Page 5 of 13

approach is to set each significant coefficient to the
center of its uncertainty interval:

<−
>+
=

=
.0)(,]5.0)([

)6(0)(,]5.0)([
0)(,0

)(
iqiqT
iqiqT
iq

ix

F

F

The combined bitplane encoder / decoder quantiser
function is shown in Fig. 4(a), where the width of the
zero-amplitude bin is twice that of other bins, in contrast
to the uniform bin width distribution of the mid-tread
quantiser typical of fixed-bitrate coding [Fig. 4(b)].

In

Out

(a)

In

Out

(b)

Fig. 4. Quantiser functions with equal zero-bin
widths: (a) bitplane quantiser, and (b) uniform
mid-tread quantiser.

If on average a bitplane coder identifies the same
number of significant (non-zero) coefficients as an
otherwise-identical fixed-rate coder with uniform
quantisation, then the average zero bin width for the two
quantisers will be equal. Due to the reduced non-zero
bin width, the bitplane quantiser will introduce a smaller
average quantisation error for non-zero coefficients.
Hence we can say that if a bitplane quantiser identifies
the same number of non-zero coefficients nsig as a
fixed-rate quantiser with uniform quantisation, then the
bitplane quantiser will code to a precision at least as
good as the fixed-rate quantiser.

4. FIXED-RATE REFERENCE CODER

We can use the evaluation framework established above
to simulate the coding efficiency of a fixed-bitrate
coder, and use this as a reference to gauge the
performance of scalable quantisation algorithms. The
fixed-rate reference coder follows the generic structure
outlined in Fig. 1. A fixed-length modified discrete
cosine transform (MDCT) is used with a frame length K
of 1024 samples and a 50% overlapping window length
of 2048 samples; this transform arrangement is similar

to the long block mode of MPEG-2/4 AAC [13]. The
transform output is partitioned into 32 bands where the
band boundaries follow a compressed critical-band law.
Coefficients in each band are weighted using banded
scalefactors prior to quantisation in order to achieve a
perceptually-appropriate shaping of quantisation noise.
The scalefactors are calculated using a custom
psychoacoustic model and quantised in steps of 3 dB.

To calculate coding efficiency η for this fixed-rate
system we use a result derived by Watson and Truman
[14] who measure the behaviour of the multi-
dimensional Huffman coding algorithm used in AAC
[13], and show the average bitrate requirement for
quantised coefficients in each frame is closely
approximated by the 1-dimensional entropy of the
quantised coefficient values. To simulate this system
and find the quantised coefficient values for each frame
of a given signal at a target bitrate, a global gain factor
applied to the band weights is set recursively on a
frame-by-frame basis (Fig. 5). Using this approach,
coding efficiency is estimated as a function of bitrate by
averaging η at each bitrate across 3 single-channel 44.1
kHz sampled test pieces (harpsichord, pitchpipe, and
female voice with background music). The results are
shown in Fig 6 marked 'AAC' - as expected, coding
efficiency is less than 50 % even at higher bitrates.

pcm input
mdct

global
gain

psycho-
acoustic
model

band
weights

q(i)

entropy
calculation

rate control

Fig. 5. Simulating AAC coefficient values for
coding efficiency estimation.

5. SPIHT

In the bitplane coding algorithm pioneered by Shapiro
for use in image coding [3], a zero-tree hierarchy is
defined for significance map coding. Coefficients are
scanned sequentially following the order of the
hierarchy, where each coefficient at a given frequency
(the parent) can be related to a set of coefficients at
higher frequencies (the children), and no child node is
scanned before its parent. For two-dimensional image

Dunn BITPLANE RUNLENGTH CODING

AES 120th Convention, Paris, France, 2006 May 20–23

Page 6 of 13

coding each parent coefficient typically has four
children, and the zero-tree hierarchy can efficiently code
significance maps because if a low-frequency
coefficient is found to be insignificant, then many
higher-frequency coefficients with the same spatial
location are also likely to be insignificant.

SPIHT

BPRL

AAC

10

20

30

40

50

0 32 64 96
bitrate kbit/s

PE
 c

od
in

g
ef

fic
ie

nc
y

%

Fig. 6. Coding efficiency η as a function of
bitrate for 3 coding schemes.

Set Partitioning in Hierarchical Trees (SPIHT) due to
Said and Pearlman [4] is a refinement of the zero-tree
algorithm, where again compact significance map
coding is dependent upon each parent in the hierarchy
having many children. Effective use of SPIHT for audio
bitplane coding requires a solution to the problem of
how to map a one-to-many hierarchy to a 1-dimensional
transform array typical with audio coding. Fig. 7 shows
one possible hierarchy where each parent coefficient has
4 child coefficients clustered together in frequency, with
the exception of the dc coefficient which has no
offspring. This arrangement was first reported in [9],
and later studied in [15]. Here we can relate frequency
indices for the 4 child coefficients c0 … c3 to their
parent frequency index p:

.
4

1for

34)(
)7(24)(

14)(
4)(

3

2

1

0

Kp

ppc
ppc
ppc
ppc

<≤

+=
+=
+=

=

More generally for a hierarchy 'fanout' N, where N is an
integer power of 2,

.1for

)8(}1,0{)(

N
Kp

NpNpc

<≤

−+=

Using otherwise identical coding conditions, simulation
results shown in Fig. 6 suggest SPIHT-based scalable
bitplane coding with N = 4 achieves coding efficiency
somewhat lower than the fixed-rate AAC reference.
Direct comparisons of the average number of significant
coefficients nsig coded across the bitrate range 32 - 96
kb/s (sampled in steps of 8 kb/s) indicates SPIHT
suffers an equivalent bitrate penalty of 9% relative to
AAC (Table 1). This result is consistent with previously
reported subjective comparisons between AAC and
SPIHT [16].

*

frequency
0

transform
coefficients

Fig. 7. SPIHT hierarchy for use with uniform
decomposition audio transforms, where each
parent coefficient has 4 offspring.

Coding
Scheme

Fixed-rate /
Scalable

Relative coding
efficiency %

SPIHT Scalable 91

AAC Fixed-rate 100

BPRL Scalable 104

Table 1. Relative coding efficiencies averaged
across bitrate range 32 - 96 kb/s.

6. BITPLANE RUNLENGTH CODING
For audio bitplane coding an effective low-complexity
alternative to SPIHT coding of the significance map is
to runlength code the MSB locations within each
bitplane. Several references to bitplane runlength coding
can be found in the literature.

Dunn BITPLANE RUNLENGTH CODING

AES 120th Convention, Paris, France, 2006 May 20–23

Page 7 of 13

Delogne and Macq [17] describe a pseudo-bitplane
coding scheme for video applications, where MSB
locations within each bitplane are coded using runlength
codes and all LSB bits for a newly-identified significant
coefficient are coded immediately following the MSB.
Because refinement bits are not output progressively on
a bitplane-by-bitplane basis, the resultant bitstreams are
not optimally embedded.

The JPEG image compression standard [18] includes a
progressive coding mode where an initial coefficient
scan codes the 4 most significant bitplanes, followed by
refinement scans which increase the coded image
resolution in single-bitplane steps. MSB locations
within the refinement bitplanes are identified using
runlength codes which are then Huffman encoded, and
this significance map data is interleaved with refinement
bits of significant coefficients identified in more
significant bitplanes.

Shapiro [3] briefly considers runlength coding of the
significance map in two-stage bitplane coding, but notes
that for image wavelet transform coefficients zero-tree
coding results in more compact significance map
representations.

Ordentlich and co-workers [5] provide a more detailed
study of bitplane runlength coding of image wavelet
coefficients. Here adaptive Golomb codes are used to
code the zero-run lengths between bitplane MSB
locations. Malvar [19] further investigated the use of
adaptive Golomb codes with image bitplane coding,
focusing on the adaptive runlength code due to Langdon
Jr [20].

0 K-1

FIRST NON-ZERO MSB

REFINEMENT LSBs

RUNLENGTH CODE

MSB

MSB-1

MSB-2

runlength codes
skip coefficients
removed from LIC

Fig. 8. Bitplane runlength coding.

Given a frame of K audio transform coefficients x(k)
arranged in sign-magnitude format, a two-stage bitplane
runlength coding algorithm includes the following steps
(Fig. 8):

• form two coefficient lists: a list of insignificant
coefficients (LIC, initially containing all coefficients in
the frame), and a list of significant coefficients (LSC,
initially empty)

• code the most-significant bitplane level for all LIC
members = log2|x|max

• for each bitplane, beginning with the most significant
bitplane:
- code the significance map:

- runlength code the positions of newly-
significant LIC members, ie those coefficients
whose MSB is located within the current
bitplane

- when a LIC member is found to be newly
significant:
- output its sign
- remove this coefficient from the LIC and

add to the LSC
- code refinement bits:

- for all LSC members added in previous more-
significant bitplanes, output the LSB
corresponding to the current bitplane

• terminate coding when either the bit allocation for the
frame is used or target coding resolution achieved

6.1. Adaptive Golomb Codes

A useful runlength code is the Golomb code with
parameter g, where non-negative runlength r is coded as
2 components – a prefix r / g coded in unary, followed
by suffix [r mod g] coded in binary [21]. A particularly
simple form of Golomb code, sometimes known as Rice
codes, occurs when g = 2w for some integer wordlength
w ≥ 0 - here r can be coded by removing the w least-
significant bits from r, coding the remainder as a unary
prefix, and appending w binary LSB’s. For example, if r
= 9 and w = 2, then the Golomb-Rice code for r is
‘00101’ – here the prefix is ‘001’ = 8, and the remainder
is ‘01’ = 1.

The coding efficiency achieved using Golomb-Rice
codes to runlength code significant coefficient locations
in a bitplane depends on the code wordlength w and the
runlength distribution. w can be set to a fixed value
which on average results in the most compact code
across many frames of a test item. Alternatively w can
be optimised for each frame, and sent as side
information at the start of the frame so that a decoder
can correctly interpret the coded bitplane data. Yet
another approach [17] is to optimise w for each bitplane

Dunn BITPLANE RUNLENGTH CODING

AES 120th Convention, Paris, France, 2006 May 20–23

Page 8 of 13

of each frame, and send the appropriate side information
at the start of each bitplane.

An alternative to explicitly coding wordlength side
information in the bitstream is to make the Golomb-
Rice code adaptive in the sense that w varies as a
function of previously coded bitplane data – that is,
backwards-adaptive runlength coding. Malvar [19] uses
the adaptive code due to Langdon Jr [20] for bitplane
runlength coding of image transform coefficients, where
each ‘0’ in the unary-coded prefix causes the
wordlength w to increment, and w decrements following
the binary-coded suffix. Many other adaptation
strategies exist [5]. In general the advantages of using
adaptive Golomb-Rice codes to scan for significant list
entries includes the simplicity and computational
efficiency of the codes, and also the efficiency with
which the codes can adapt to changing runlength
statistics within a list. This results in relatively compact
bitplane coding without the use of wordlength side
information.

For audio transform coefficient bitplanes the average
spacing between significant LIC entries tends to
increase with frequency, particularly for more-
significant bitplanes coded earlier in the frame. When
using adaptive Golomb-Rice coding to runlength code
bitplane MSB locations, coding efficiency is
significantly improved by resetting the Golomb-Rice
wordlength to a small value at the beginning of each
bitplane scan. In practice with typical frame lengths,
resetting w to 0 or 1 can increase overall bitplane
runlength coding efficiency by approximately 10%
compared to coding with an unconstrained wordlength.

The effectiveness of adaptive Golomb-Rice codes is
indicated when comparing bitplane runlength coding
efficiency with an optimised adaptive code against a
Golomb-Rice code with a wordlength that is fixed (to an
optimal value) across all bitplanes and frames. With
44.1 kHz sampled test items, allowing the Golomb-Rice
wordlength to adapt improves average coding efficiency
across the bitplane range 32 - 96 kb/s by a substantial
40%.

6.2. End-of-Run Codes

When fixed- or adaptive- Golomb-Rice codes are used
to scan bitplanes for newly-significant coefficients,
coding the end of the bitplane following the final
significant coefficient can be simply achieved by
outputting repeated prefix ‘0’s until the end of the LIC

is passed. When a decoder receives coded data and the
current LIC position passes the known list length, all
remaining coefficients following the last significant
position are marked as insignificant and decoding of the
current bitplane terminates. These end-of-run codes are
particularly compact when an adaptive Golomb-Rice
runlength code is used. For example, with the runlength
wordlength adaptation rule due to Langdon Jr [20] and a
maximum list length of 1024 entries, repeated-prefix
end-of-run codes require a maximum of eleven (and
typically far fewer) prefix bits.

An alternative end-of-run coding method described by
Leslie et al. [22] is to output a single-bit flag following
each MSB location coded, to indicate the existence of
further newly-significant coefficients within the
bitplane. When '0' is output to indicate no further MSB
locations within the bitplane, significance map coding
for the current bitplane ceases. The motivation behind
such a scheme is that at lower bitrates most significant
coefficients are located at lower frequencies, and long
runs of insignificant high-frequency coefficients can be
efficiently coded by outputting a single bit. However, a
simple calculation indicates that under typical coding
conditions this technique is less efficient than the
repeated-prefix method. At a typical bitrate of 64 kb/s,
an efficient coder operating in long block mode (K =
1024) at 44.1 kHz sample rate will on average identify
approximately 170 significant coefficients within 8
bitplanes. Hence on average each bitplane contains 20
newly-significant coefficients, and single-bit flags
collectively require 20 bits to code the end-of run code
for the bitplane.

6.3. RVLCs

An interesting aspect of fixed-wordlength and some
adaptive Golomb-Rice codes is that with minor
modification they can form reversible variable length
codes (RVLCs), where the code prefix can be decoded
in either a forward or reverse direction. Favourable code
length distributions allow bitplane runlength coding
with RVLCs to achieve good coding efficiency, while
bi-directional decoding can confer advantages of
improved coding robustness with error-prone
transmission channels [23]. An audio bitplane coder
where RVLCs are used to code bitplane runlengths is
described by Zhou et al. [10].

Dunn BITPLANE RUNLENGTH CODING

AES 120th Convention, Paris, France, 2006 May 20–23

Page 9 of 13

6.4. Short Block Interleaving

When the time-frequency transform outputs multiple
coefficient blocks across a frame, for example with a
block-switched coder operating in short-block mode
under transient signal conditions, a reordering process
prior to bitplane runlength coding which interleaves
coefficients in a data-independent manner can
significantly increase coding efficiency.

The reordering step groups together coefficients with
the same frequency index within the LIC. Since
coefficients with the same frequency index tend to be of
similar magnitude, reordering has the effect of
clustering significant coefficient locations within LIC
scans. This results in longer runs of insignificant
coefficients which can improve coding efficiency when
runlength coded, particularly when using adaptive
runlength codes. A similar process is described by
Malvar [19] for reordering image wavelet transform
coefficients prior to bitplane coding, while short-block
interleaving is also used in fixed-rate MPEG-2 AAC
audio coding [24].

Consider a coder with a frame length of K time-domain
input samples and an MDCT window length of 2M. The
number of coefficient blocks output for each frame B =
K / M, each block containing M unique coefficients
ranging from dc to half the sampling frequency.
Addressing the transform coefficients with a time index
b, and frequency index m,

.M...m
B...b
mbx

10
)9(10where

,]][[output MDCT

−=
−=

=

With a frame length of 1024 samples, a typical short-
block frame contains B = 8 blocks each with M = 128
coefficients.

The reordering process prior to bitplane coding can be
described as

[] []

.

)10(,mod
,1...0where

,)(

=

=
−=

=

B
km

Bkb
Kk
mbxkLIC

When a frame contains only a single block of MDCT
coefficients (long block mode, B = 1), the reordering
operation is the trivial task of copying the coefficients to
the LIC in frequency order,

)11(.]][0[)(kxkLIC =

For bitplane runlength coding using adaptive Golomb-
Rice codes, reordering results in a substantial increase
in coding efficiency for short-block MDCT frames.
With 44.1 kHz sampled test items, the average
improvement in coding efficiency is approximately 30%
across the bitrate range 32 - 96 kbit/s compared to the
non-interleaved case.

Note that a similar reordering can be made with non-
uniform transform decompositions, for example from a
wavelet packet transform, grouping together all
coefficients with the same subband frequency index
within the LIC prior to bitplane coding.

6.5. Sub-Sequence Formation

The coding efficiency of the bitplane runlength coding
method described above can be enhanced by extracting
LIC coefficients to form a sub-sequence, which for each
bitplane significance scan is coded before the remaining
LIC coefficients. This technique was originally
investigated by Ordentlich et al [5], [25] for bitplane
coding of image wavelet coefficients.

The sub-sequence is coded using a method similar to
that used to code the main coefficient list (LIC), ie
identify the significant list entries using fixed or
adaptive Golomb runlength codes. The addition of sub-
sequence coding requires the significance map to be
coded in three stages, which collectively identify
coefficients with MSBs in the current bitplane:

(a) extract sub-sequence coefficients from LIC;

(b) scan sub-sequence(s) for significant entries, output
runlength codes and sign bits, move significant
entries to LSC;

(c) scan LIC for significant entries, output runlength
codes and sign bits, move significant entries to
LSC.

The criteria used to extract coefficients from the LIC to
form a sub-sequence should be that the extracted

Dunn BITPLANE RUNLENGTH CODING

AES 120th Convention, Paris, France, 2006 May 20–23

Page 10 of 13

coefficients have a higher expected probability of
becoming significant in the pending bitplane scan than
those coefficients that remain in the LIC [5]. Suitable
contexts for selecting coefficients to form the sub-
sequence could include:

• coefficients that are frequency-domain neighbours
to significant coefficients with the same time
index

• for frames containing more than one transform
block (B > 1), coefficients that are time-domain
neighbours to significant coefficients with the
same frequency index

• the significant neighbour ‘age’, or the bitplane
difference between the significant neighbour MSB
bitplane and the current bitplane

• coefficients that have some harmonic relationship
to significant coefficients.

Note that it is possible for coefficient extraction to take
place at any point(s) within a bitplane scan, although in
practice the sub-sequence is conveniently formed at the
start of each bitplane scan. Multiple sub-sequence
formation and coding using a number of extraction
contexts is also possible.

Although sub-sequence formation and coding increases
the complexity of the bitplane runlength coding
algorithm, it can confer modest increases in coding
efficiency compared to simple single-list scans. For
example, with 44.1 kHz sampled test items, forming a
single sub-sequence with a simple frequency-neighbour
extraction context improves overall coding efficiency by
an average of 5 % across the bitrate range 32 - 96 kb/s.

6.6. Layered Coding

The full-bandwidth coding algorithms described so far
address all coefficients in a bitplane before coding
lower-significance bitplanes, and coding bandwidth is
invariant with bitrate. While full-bandwidth coding
results in good subjective quality at higher bitrates,
coding quality can decrease at lower bitrates where on
average too few bits are available to code each
significant coefficient. At lower bitrates improved
subjective quality can be achieved by limiting the
bandwidth of each bitplane scan, allocating more bits on
average to each significant coefficient coded. Ideally the

coding bandwidth should be constrained to a fixed value
within a defined bitrate range, so that consecutive
frames decoded at the same bitrate have the same
bandwidth; this avoids decoding consecutive frames to
different bandwidths, which can result in uncancelled
transform alias products.

Defining a number of bitrate ranges where encoder
bitplane scans are constrained to a limited range of
coefficient frequencies results in a ‘layered’ bitstream
where coding bandwidth increases with bitrate, and
fine-grain scalability is maintained within each coded
layer. Each layer is defined with a bit allocation and a
bandwidth limit. Referring to Fig. 9, following coding
of the base layer with the lowest bandwidth, each
enhancement layer codes coefficients to a higher
bandwidth limit, and can also code uncoded coefficient
data from previous layer bandwidth limits.

Base Layer
(Layer 0)

Layer 1 Layer 2

Frequency

MSB
MSB-1

Start of Layer 1

End of Layer 0

Fig. 9. Layered audio bitplane coding with
variable coding bandwidth a function of bitrate.

An example of layered bitplane coding has previously
been described by Park and co-workers [7], [26] where
arithmetic coding is used to identify newly-significant
coefficient locations within each bitplane. Runlength
coding can also be used to code layered bitplanes,
embedding list scans within an outer layer loop in order
to achieve a layered bitstream format. The coding
efficiency of a layered bitplane runlength coder can be
gauged by comparing the high-bitrate performance with
an equivalent full-bandwidth (non-layered) coder.
Typically the overall loss in coding efficiency relative to
the non-layered reference can be limited to less than 5%
by addressing various design aspects of the layered
system. For example, if fixed-wordlength Golomb-Rice
runlength codes are used to code layered bitplanes, the
runlength code wordlength can be optimised for each
frame, or each layer, or each bitplane within each layer,

Dunn BITPLANE RUNLENGTH CODING

AES 120th Convention, Paris, France, 2006 May 20–23

Page 11 of 13

and output as bitstream side information as appropriate.
If an adaptive Golomb-Rice runlength code is used, then
the wordlength should be reset to a small value at the
start of each bitplane within each layer. End-of-run’s
can be efficiently coded by outputting consecutive
prefix ‘0’s until the layer bandwidth limit is passed.

6.7. Results
Coding efficiency results are shown in Fig. 6 for a low-
complexity bitplane runlength (BPRL) coding algorithm
with the following features:

• full bandwidth coding (non-layered)

• simple LIC scans (no sub-sequence formation)

• adaptive Golomb-Rice runlength coding

• repeated prefix end-of-run codes.

The results measured with 44.1 kHz sampled test items
and 1024-sample single-long-block frames suggest
scalable bitplane runlength coding achieves coding
efficiency slightly higher than the fixed-rate AAC
reference. Direct comparisons of the average number of
significant coefficients coded across the bitrate range 32
- 96 kb/s indicates the bitplane runlength algorithm
achieves an equivalent bitrate advantage of 4% relative
to AAC (Table 1).

7. SUBJECTIVE RESULTS

7.1. Demonstration Codec

A demonstration codec featuring a scalable quantisation
stage with bitplane runlength (BPRL) coding was
constructed. The BPRL encoder design follows the
generic structure outlined in Fig. 1, with a time-
frequency transform similar to the block-switched
MDCT used in MPEG-AAC [13]. With a frame length
of 1024 samples, combined BPRL encoder-decoder
delay is approximately 1600 samples including
lookahead, equivalent to 36 ms at typical sample rates.

A custom psychoacoustic model is used to spectrally
shape quantisation errors so as to be minimally audible.
Most of the computational requirement in the encoder is
due to the psychoacoustic model. Because
psychoacoustic model calculations are confined to the
encoder, decoder complexity is low.

The BPRL quantisation stage features design details
outlined in Section 6.7. Inter-frame prediction is not
used, and each frame of data received by the decoder
can be decoded independently without any knowledge
of previous frames. Optional source coding techniques
can be used to produce bitstreams that are robust against
transmission errors. The bitstream syntax adopted
restricts bitrate granularity to 16-bit atoms, which at
typical sample rates results in bitrate granularity of 0.7
kbit/s.

A Win32 BPRL decoder and scalable bitstreams are
available for demonstration purposes at
http://www.scalatech.co.uk/download.htm

7.2. Subjective Comparisons
Informal but carefully controlled listening tests
compared perceptual transparency bitrates achieved
with the BPRL demonstration codec against two fixed-
bitrate and two scalable reference codecs:

• MPEG-1 Layer 3 (MP3) - FhG mp3 codec - fixed
bitrate

• MPEG-4 AAC Low Complexity Profile (AAC)
[13] - Apple Quicktime Pro 6.5 - fixed bitrate

• MPEG-4 Bit Sliced Arithmetic Coding (BSAC) [7],
[27] - scalable

• Microsoft Embedded Audio Coder (EAC) [11] -
scalable

A measure of transparency was obtained for each codec
by averaging transparency bitrates across four
demanding 44.1 kHz-sampled test pieces. The tests
were conducted using both single-channel and stereo
material.

Results for the BPRL codec indicate average
transparency bitrates of 80 kbit/s for mono signals, and
132 kbit/s for stereo material (Fig. 10). This represents
an improvement in coding efficiency compared to fixed-
bitrate MP3, and also the two scalable reference codecs.
While the BPRL mono result is close to optimised AAC
performance, the shortfall in stereo performance
compared to AAC may relate to the absence of intensity
stereo coding with the tested BPRL implementation

Dunn BITPLANE RUNLENGTH CODING

AES 120th Convention, Paris, France, 2006 May 20–23

Page 12 of 13

AAC

AAC
BPRL

BPRL

BSAC

MP3

MP3

EAC

EAC

0
20
40
60
80

100
120
140
160
180

MONO STEREO

Tr
an

sp
ar

en
cy

 B
itr

at
e

kb
it/

s

Fig. 10. Transparency bitrates for comparison codecs.

8. CONCLUSIONS

Bitplane coding has been considered as a general
method of achieving fine-grain bitrate scalability
suitable for audio coding. Analysing bitplane coding as
a two-stage process comprising significance map and
refinement stages allows coding efficiency metrics to
compare alternative bitplane coding algorithms.
Compact significance map coding is shown to relate to
perceptual entropy coding efficiency, while the number
of significant coefficients coded in each frame can be
used to directly compare the coding efficiencies of
fixed-rate and scalable algorithms.

Bitplane runlength (BPRL) coding, where runlength
codes identify newly-significant coefficient locations in
each bitplane, is shown to achieve efficient, low-
complexity scalable audio coding. BPRL coding is
particularly effective when using adaptive Golomb-Rice
runlength codes. The coding efficiency observed with
multi-block frames is substantially improved by
interleaving coefficients prior to bitplane runlength
coding.

BPRL coding efficiency comfortably exceeds that
achieved with currently-known SPIHT hierarchies.
Moreover, BPRL coding shows a small theoretical
coding efficiency advantage compared to fixed-rate
MPEG-AAC coding. Subjective comparisons between a
demonstration BPRL codec and various reference
codecs indicates practical audio bitplane runlength
coding achieves fine-grain scalability while remaining
competitive in terms of coding efficiency with fixed-
rate codec designs.

9. ACKNOWLEDGEMENTS
This work was initially supported by the UK
Department of Trade and Industry (DTI). Further
support has been received from the National
Endowment for Science, Technology and the Arts.

10. REFERENCES

[1] J. D. Johnston, "Transform Coding of Audio
Signals Using Perceptual Noise Criteria," IEEE J.
Select Areas in Communications, vol. 6, pp. 314 -
323 (1988 Feb.).

[2] J. Herre et al., "The Integrated Filterbank Based
Scalable MPEG-4 Audio Coder," presented at the
105th Convention of the Audio Engineering
Society, San Francisco, 1998 (preprint 4810).

[3] J. M. Shapiro, "Embedded Image Coding Using
Zerotrees of Wavelet Coefficients," IEEE Trans.
Sig. Proc., vol. 41, pp. 3445 - 3462 (1993 Dec.).

[4] A. Said and W. A. Pearlman, "A New, Fast, and
Efficient Image Codec Based on Set Partitioning in
Hierarchical Trees," IEEE Trans. Circuits and Sys.
Video Tech., vol. 6, pp. 243 - 250 (1996 June).

[5] E. Ordentlich et al., "A Low-Complexity Modelling
Approach for Embedded Coding of Wavelet
Coefficients," Proc. 1998 IEEE Data Compression
Conference, Snowbird, Utah, pp. 408 - 417 (1998
Mar.).

[6] Y. Karelic and D. Malah, "Compression of High-
Quality Audio Signals using Adaptive Filterbanks
and a Zero-Tree Coder," Proc. 18th IEEE National
Convention, Tel Aviv, Israel (1995 Mar.).

[7] S. H. Park et al., "Multi-Layer Bit-Sliced Bit Rate
Scalable Audio Coding," presented at the 103rd
Convention of the Audio Engineering Society, New
York, Sep. 1997 (preprint 4520).

[8] Z. Lu and W. A. Pearlman, "High Quality Scalable
Stereo Audio Coding" (1999), available at
http://www.cipr.rpi.edu/~pearlman/papers/scal_aud
io.ps.gz

[9] C. Dunn, "Efficient Audio Coding with Fine-Grain
Scalability, " presented at the 111th Convention of
the Audio Engineering Society, New York, 30
November - 3 December 2001, J. Audio Eng. Soc.
(Abstracts), vol. 49, p. 1235 (2001 Dec.), preprint
5492.

[10] J. Zhou et al., "Error Resilient Scalable Audio
Coding (ERSAC) for Mobile Applications," IEEE

Dunn BITPLANE RUNLENGTH CODING

AES 120th Convention, Paris, France, 2006 May 20–23

Page 13 of 13

2001 Workshop on Multimedia Signal Processing,
Cannes, France (2001 Oct.).

[11] J. Li, "Embedded Audio Coding (EAC) with
Implicit Psychoacoustic Masking", ACM
Multimedia 2002, pp. 592 - 601, Nice, France,
Dec.1 - 6, 2002.

[12] J. D. Johnston, "Estimation of Perceptual Entropy
Using Noise Masking Criteria," Proc. ICASSP
1988, pp. 2524 - 2527.

[13] M. Bosi et al., "ISO/IEC MPEG-2 Advanced Audio
Coding," J. Audio Eng. Soc., vol. 45, pp. 789 - 812
(1997 Oct.).

[14] M. A. Watson and M. Truman, "Analyzing the
Performance of Lossless Coding Techniques Used
in Audio Coders," presented at the 109th
Convention of the Audio Engineering Society, Los
Angeles, Sept. 2000 (preprint 5275).

[15] M. Raad, A. Mertins and I. Burnett, "Audio
Compression using the MLT and SPIHT," Proc. 6th

Int. Symposium on Digital Signal Processing for
Communication Systems, Sydney, Australia, pp.
128 - 132 (2002 Jan.).

[16] M. Raad, A. Mertins and I. Burnett, "Scalable to
Lossless Audio Compression Based on Perceptual
Set Partitioning in Hierarchical Trees (PSPIHT),"
Proc. IEEE Int. Conf. Acoustics Speech Sig. Proc
(ICASSP) (2003).

[17] P. Delogne and B. Macq, "Universal Variable
Length Coding for an Integrated Approach to
Image Coding," Ann. Telecommun., vol. 46, no. 7 -
8 (1991 July).

[18] Digital Compression and Coding of Continuous-
Tone Still Images, Part 1, Requirements and
Guidelines: Annex G - Progressive DCT-Based
Mode of Operation, ISO/IEC International Standard
10918-1 (1992 Sept.).

[19] H. S. Malvar, "Fast Progressive Wavelet Coding,"
Proc. 1999 IEEE Data Compression Conference,
Snowbird, Utah (1999 Mar.)

[20] G. G. Langdon Jr., "An Adaptive Run-Length
Coding Algorithm," IBM Technical Disclosure
Bulletin, vol. 26, no. 7B (1983 Dec.).

[21] S. W. Golomb, "Run-length Encodings," IEEE
Trans. Inform. Theory, vol. IT-12, pp. 399 - 401
(1966 July).

[22] B. Leslie, C. Dunn and M. Sandler, "Developments
with a Zero Tree Audio Codec," Proc. AES 17th
International Conf. ‘High Quality Audio Coding’,
Florence, pp. 251 - 257 (1999 Sep.).

[23] J. Wen and J. D. Villasenor, "Reversible Variable-
Length Codes for Efficient and Robust Image and
Video Coding," Proc. 1998 IEEE Data
Compression Conference, Snowbird, Utah, pp. 471
- 480 (1998 Mar.).

[24] S. R. Quackenbush and J. D. Johnston, "Noiseless
Coding of Quantized Spectral Components in
MPEG-2 Advanced Audio Coding," Proc. IEEE
ASSP Workshop on Apps. Sig. Proc. to Audio and
Acoustics, Mohonk (1997).

[25] E. Ordentlich et al., "Context-Based Ordering and
Coding of Transform Coefficient Bitplanes for
Embedded Bitstreams," US6263109 (2001 July).

[26] S. H. Park, "Scalable Audio Coding / Decoding
Method and Apparatus," EP0884850A3 (2000
Mar.), see also US6122618 (2000 Sep.).

[27] ISO/IEC JTC1/SC29/WG11 N2803, "MPEG-4
Audio Version 2 (Final Committee Draft 14496-3
AMD1)", Vancouver, Canada (1999 July).

	INTRODUCTION
	BITPLANE CODING
	CODING EFFICIENCY
	FIXED-RATE REFERENCE CODER
	SPIHT
	BITPLANE RUNLENGTH CODING
	Adaptive Golomb Codes
	End-of-Run Codes
	RVLCs
	Short Block Interleaving
	Sub-Sequence Formation
	Layered Coding
	Results

	SUBJECTIVE RESULTS
	Demonstration Codec
	Subjective Comparisons

	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

